Short Communication

Superconducting Cuprates and Related Oxides X. *In-Situ* Neutron Powder Diffraction Investigation of the Solid State Synthesis of $YBa_2Cu_3O_{7-\delta}$ in a Flow of Oxygen at Temperatures up to 950 °C

A. Nørlund Christensen,*,a N. H. Andersenb and A. Hoserc

^aDepartment of Inorganic Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark, ^bCondensed Matter Physics and Chemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, ^cHahn-Meitner-Institut, D-14109 Berlin, Germany

Christensen, A. N., Andersen, N. H. and Hoser, A., 1998. Superconducting Cuprates and Related Oxides X. *In-Situ* Neutron Powder Diffraction Investigation of the Solid State Synthesis of YBa₂Cu₃O_{7-δ} in a Flow of Oxygen at Temperatures up to 950 °C. – Acta Chem. Scand. 52: 651–653. (c) Acta Chemica Scandinavica 1998.

The tetragonal cuprate, $YBa_2Cu_3O_{7-\delta}$, which is the precursor phase for the orthorhombic high- T_c superconductor YBa₂Cu₃O₇₋₈, can be obtained at 950 °C in a solid-state reaction from a Y2O3-BaCO3-CuO mixture. In a previous investigation it was demonstrated that the reaction at 950 °C is complete within 4 h, and that the compound BaY2CuO5 was formed as an intermediate phase.¹ Barium oxide reacts more readily than barium carbonate in solid state reactions. In a preliminary investigation using a Y₂O₃-BaO-CuO mixture at the reaction temperatures 800 and 900 °C it was found that the formation of the cuprate went through formation of the precursor phase BaCuO₂, and that this phase was formed within 20 min. Pellets of the mixture of Y₂O₃-BaO-CuO were placed in a furnace at 800 or 900 °C at time periods from 20 min to 3.5 h. After the heat treatment, qualitative phase analysis of the pellets was made based on X-ray powder diffraction. However, a more detailed information on the solid-state sintering processes may be obtained by in-situ powder diffraction, and for this reason investigation of the sintering reaction was made in an in-situ neutron powder diffraction investigation.

Experimental

The investigation was made using the neutron powder diffractometer E2 at the Hahn–Meitner Institute in Berlin using a neutron wavelength of 2.406 Å. The flux at the sample position of E2 is $2 \times 10^6 \, n/\text{cm}^2$ s.

A stoichiometric reaction mixture was made of Y₂O₃ (Auer-Remy), BaO (Alfa) and CuO (Merck). The reaction mixture was placed in a quartz glass tube under an oxygen flow of 0.15 L min⁻¹. The tube was heated in a vacuum furnace controlled by an ILL precision temperature controller. Four *in-situ* experiments were performed with the temperature ramped to the temperatures listed in Table 1, where the heating rates are also listed. The samples were kept at the reaction temperatures for sufficient time for the chemical reactions to reach equilibrium. Almost all chemical reactions took place when the temperature was ramped, and only marginal changes were observed in the powder patterns recorded at the constant temperatures.

The phases formed in the *in-situ* investigations were identified from the neutron diffraction powder patterns. Theoretical neutron diffraction powder patterns were calculated using the program LAZY PULVERIX,² and the structural information for the compounds listed in Table 2.

Results

The results of the investigation are that BaO and CuO reacts faster than Y_2O_3 . Two precursor phases are formed. Ba₂Cu₃O_{5+ δ}, whose formation starts as low as at 350 °C, starts to decompose above 800 °C, forming the second precursor phase BaCuO₂ and CuO, and BaCuO₂ reacts finally to produce tetragonal YBa₂Cu₃O_{7- δ}. Figures 1-4 show patterns from experiment No. 1. Figure 1 shows the neutron diffraction powder pattern

^{*}To whom correspondence should be addressed.

Table 1. Experimental conditions for the in-situ investigation and crystalline phases identified.

Experiment no.	Heating rate/°C h ⁻¹	$T_{\sf max}/^\circ{\sf C}$	Time at $T_{\rm max}/{\rm h}$	Intermediate phases observed	Reaction products	
					Impurity	Main product
1	567	950	2	Ba ₂ Cu ₃ O _{5+δ} , BaCuO ₂		YBa ₂ Cu ₃ O _{7-δ}
2	280	900	5.5	$Ba_2Cu_3O_{5+\delta}$, $BaCuO_2$	BaCuO ₂	YBa ₂ Cu ₃ O _{7-δ}
3	130	850	2.5	$Ba_2Cu_3O_{5+\delta}$, $BaCuO_2$	BaCuO ₂	YBa ₂ Cu ₃ O _{7-δ}
4	467	800	7	$Ba_2Cu_3O_{5+\delta}$	_	$Ba_2Cu_3O_{5+\delta}$

Table 2. List of reactants and possible reaction products with reference to X-ray powder patterns and crystal structures.

Compound	JCPDS card no.	Ref. to structure	
BaO	21–1056	3	
CuO	41-254	4	
Y_2O_3	43-1036	5	
Ba ₂ Cu ₃ O _{5+δ}	40-762	6	
BaCuO ₂	38-1402	7	
BaY ₂ CuO ₅	38-1434	8	
YBa ₂ Cu ₃ O ₆	39-1496	9	
YBa ₂ Cu ₃ O ₇	38–1433	10	

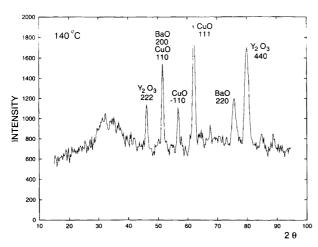


Fig. 1. Neutron diffraction powder pattern of the Y_2O_3 –BaO–CuO reaction mixture recorded at 140 °C with 2.406 Å neutrons.

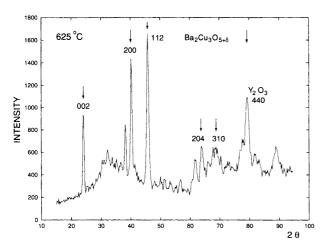


Fig. 2. Neutron diffraction powder pattern recorded at 625 °C showing Bragg reflections of $Ba_2Cu_3O_{5+\delta}$ and Y_2O_3 .

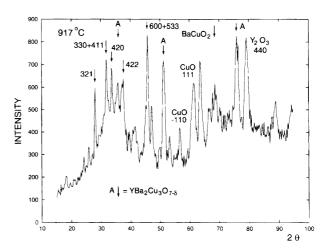


Fig. 3. Neutron diffraction powder patterns recorded at 917 $^{\circ}\text{C}$ showing Bragg reflections of BaCuO2, CuO and of Y2O3.

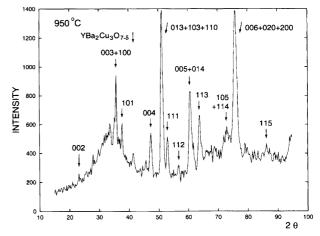


Fig. 4. Neutron diffraction powder patterns recorded at 950 $^{\circ}\text{C}$ showing Bragg reflections of YBa₂Cu₃O₇₋₈.

of the reaction mixture at $140\,^{\circ}\text{C}$. The high background in the 2θ interval $30\text{--}40^{\circ}$ is the scattering contribution from the quartz glass tube. Figure 2 shows the powder pattern of the sample taken at $625\,^{\circ}\text{C}$. The Bragg reflections from Y_2O_3 are still present, the reflections of BaO and CuO are absent, and the pattern shows reflections of $Ba_2Cu_3O_{5+\delta}$. Figure 3 shows the powder pattern of the reaction mixture at $917\,^{\circ}\text{C}$. The reflections of Y_2O_3 are still present, but $Ba_2Cu_3O_{5+\delta}$ is almost completely converted to $BaCuO_2$ and CuO. Finally, Figure 4 shows the Bragg reflections of the reaction

product, tetragonal YBa₂Cu₃O₇₋₈. Figure 5 is a plot of selected Bragg intensities vs. temperature and time for experiment No. 1. It shows that BaCuO₂ is only present in a short temperature interval between approximately $800-950\,^{\circ}\text{C}$. Figure 6 is a display of selected Bragg reflection intensities vs. temperature and time for experiment No. 4, where the maximum temperature was $800\,^{\circ}\text{C}$. The precursor phase Ba₂Cu₃O₅₊₈ is present throughout the time period in which the sample is kept at $800\,^{\circ}\text{C}$. Figure 7 shows a stack of powder patterns from experiment No. 1.

The *in-situ* investigation of the solid state synthesis of tetragonal YBa₂Cu₃O_{7- δ} from a stoichiometric mixture of Y₂O₃-BaO-CuO shows that two intermediate compounds are formed during the heating of the mixture, Ba₂Cu₃O_{5+ δ} and BaCuO₂, before YBa₂Cu₃O_{7- δ} is formed at 950 °C. The reaction temperatures 800, 850

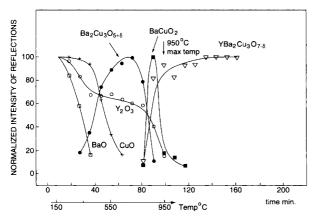


Fig. 5. Intensities of selected Bragg reflections of BaO, CuO, Y_2O_3 , $Ba_2Cu_3O_{5+\delta}$, $BaCuO_2$, and $YBa_2Cu_3O_{7-\delta}$ vs. time and temperature. The precursor phase $Ba_2Cu_3O_{5+\delta}$ is completely consumed before the maximum temperature 950 °C is reached; the precursor phase $BaCuO_2$ is almost completely consumed before 950 °C is reached, and is completely consumed in time at 950 °C.

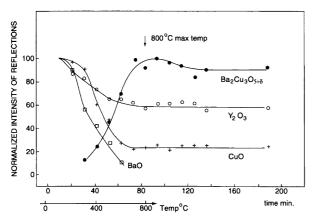


Fig. 6. Intensities of selected Bragg reflections of BaO, CuO, Y_2O_3 and $Ba_2Cu_3O_{5+\delta}$ vs. time and temperature. BaO is consumed before the maximum temperature $800\,^{\circ}\text{C}$ is reached and $Ba_2Cu_3O_{5+\delta}$ is only slowly consumed in time at $800\,^{\circ}\text{C}$.

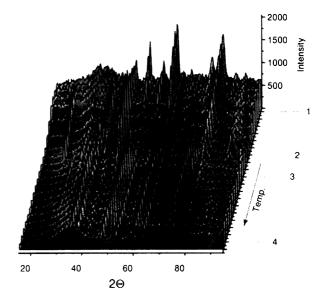


Fig. 7. Stack of neutron diffraction powder patterns showing how the reaction mixture of Y_2O_3 –BaO–CuO is converted to $YBa_2Cu_3O_{7-\delta}$. Nos. 1, 2, 3, and 4 refer to Figs. 1, 2, 3 and 4, respectively.

and 900 °C are not sufficiently high to ensure the formation of tetragonal $YBa_2Cu_3O_{7-\delta}$ as a pure phase within the time used in the investigation (Table 1). The green compound BaY_2CuO_5 , which was observed as an intermediate phase in a previous investigation using mixtures of Y_2O_3 –BaCO₃–CuO, was not observed in this investigation.

Acknowledgements. The Danish Natural Science Research Council and the Hahn-Meitner Institut have supported this investigation with grants. Experiments at BENSC were supported by the European Commission under the HCM-LSF Access Programme (contract no. CT920014). Mrs. M. A. Chevallier, Mrs. C. Secher, Mr. S. Nielsen, Mr. A. Lindahl and Mr. N. J. Hansen are acknowledged for valuable assistance.

References

- Conroy, L. E., Christensen, A. N. and Bøttiger, J. Acta Chem. Scand., Ser. A 41 (1987) 501.
- Yvon, K., Jeitschko, W. and Parthé, E. J. Appl. Crystallogr. 10 (1977) 73.
- 3. Gerlach, W. Z. Phys. 9 (1922) 184.
- 4. Åsbrink, S. and Norrby, L. J. Acta Crystallogr., Sect. B26 (1970) 8.
- O'Connor, B. H. and Valentine, T. M. Acta Crystallogr., Sect. B25 (1969) 2140.
- Thompson, J. G., FitzGerald, J. D., Withers, R. L., Barlow, P. J. and Andersen, J. S. Mater. Res. Bull. 24 (1989) 505.
- 7. Kipka, R. and Müller-Buschbaum, H. Z. Naturforsch., Teil
- 8. Michel, C. and Raveau, B. J. Solid State Chem. 43 (1982)
- Grabauskas, M. F., Green, R. W., Arendt, R. H. and Kasper, J. S. *Inorg. Chem. 27* (1988) 871.
- Brodt, K., Fuess, H., Paulus, E. F., Assmuss, W. and Kowalewski, J. Acta Crystallogr., Sect. C 46 (1990) 354.

Received July 31, 1997.